An improved charging/discharging strategy of lithium batteries considering depreciation cost in day-ahead microgrid scheduling
نویسندگان
چکیده
An energy storage system is critical for the safe and stable operation of a microgrid (MG) and has a promising prospect in future power system. Economical and safe operation of storage system is of great significance to MGs. This paper presents an improved management strategy for lithium battery storage by establishing a battery depreciation cost model and employing a practical charging/discharging strategy. Firstly, experimental data of lithium battery cycle lives, which are functions of the depth of discharge, are investigated and synthesized. A quantitative depreciation cost model is put forward for lithium batteries from the perspective of cycle life. Secondly, a practical charging/discharging strategy is applied to the lithium battery management in MGs. Then, an optimal scheduling model is developed to minimize MG operational cost including battery depreciation cost. Finally, numerical tests are conducted on a typical grid-connected MG. Results show that the depth of discharge of storage is scheduled more rationally, and operational cost is simultaneously saved for MG under the proposed management strategy. This study helps to improve the cost efficiency and alleviate the aging process for lithium batteries. 2015 Elsevier Ltd. All rights reserved.
منابع مشابه
Stochastic Multiperiod Decision Making Framework of an Electricity Retailer Considering Aggregated Optimal Charging and Discharging of Electric Vehicles
This paper proposes a novel decision making framework for an electricity retailer to procure its electric demand in a bilateral-pool market in presence of charging and discharging of electric vehicles (EVs). The operational framework is a two-stage programming model in which at the first stage, the retailer and EV aggregator do their medium-term planning. Determination of retailer's optimum sel...
متن کاملAn Optimal Operation Model and Ordered Charging/Discharging Strategy for Battery Swapping Stations
The economic operation of battery swapping stations (BSSs) is significant for the promotion of large-scale electric vehicles. This paper develops a linear programming model to maximize the daily operation profits of a BSS by considering constraints of the battery swapping demand of users and the charging/discharging balance of batteries in the BSS. Based on the BSS configuration and data from e...
متن کاملOptimization of the Microgrid Scheduling with Considering Contingencies in an Uncertainty Environment
In this paper, a stochastic two-stage model is offered for optimization of the day-ahead scheduling of the microgrid. System uncertainties including dispatchable distributed generation and energy storage contingencies are considered in the stochastic model. For handling uncertainties, Monte Carlo simulation is employed for generation several scenarios and then a reduction method is used to decr...
متن کاملEnergy Storage Scheduling with an Advanced Battery Model: A Game–Theoretic Approach
Energy storage systems will play a key role for individual users in the future smart grid. They serve two purposes: (i) handling the intermittent nature of renewable energy resources for a more reliable and efficient system, and (ii) preventing the impact of blackouts on users and allowing for more independence from the grid, while saving money through load-shifting. In this paper we investigat...
متن کاملData Analytics and Optimization of an Ice-Based Energy Storage System for Commercial Buildings
Ice-based thermal energy storage (TES) systems can shift peak cooling demand and reduce operational energy costs (with time-of-use rates) in commercial buildings. The accurate prediction of the cooling load, and the optimal control strategy for managing the charging and discharging of a TES system, are two critical elements to improving system performance and achieving energy cost savings. This...
متن کامل